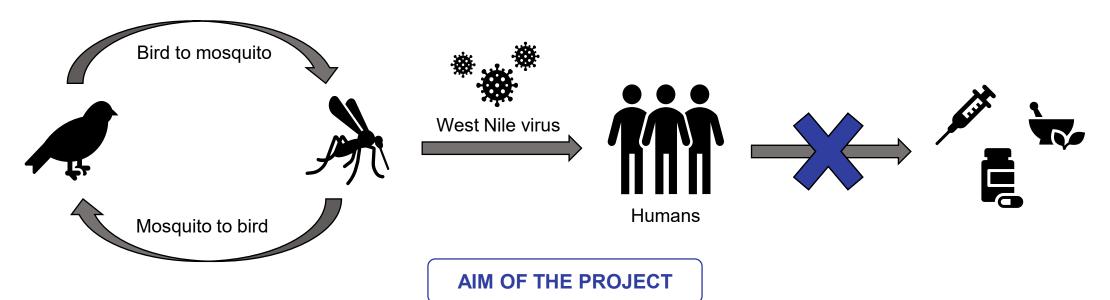


Targeting West Nile virus replicases: NS3 and heterodimers inhibitors

PhD student: **Daniele Volpin** ^a

Cristina Peggion ^a (supervisor), Riccardo Rigo ^b (co-supervisor), Mattia Sturlese ^b

^a Department of Chemical Sciences, University of Padova, 35131, Padova, Italy ^b Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy



INTRODUCTION and AIM OF THE PROJECT

The **West Nile virus** (**WNV**) is a flavivirus of the Flaviviridae family. It circulates through a mosquito–bird–mosquito cycle and it is transmitted to humans through Culex mosquitoes.

Urgency for the **development of new WNV antiviral compounds**.

A direct approach targeting the active site of NS2B-NS3 protease.

Peptides/peptidomimetics as potential inhibitors.

An **indirect approach** targeting protein-protein interactions essential for NS3 activity.

Peptides to disfavour NS2B-NS3 heterodimer.

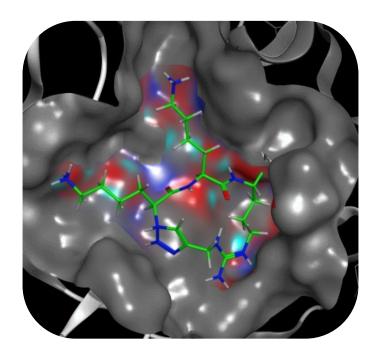
NS2B-NS3 ACTIVE SITE INHIBITORS

Tri and tetra-peptide inhibitors

Several peptides and peptidomimetics were synthesized as possible NS2B-NS3 inhibitors of WNV, tested and their IC_{50} value was evaluated.

Peptide name	Interaction	MW (g/mol)	Purity	IC ₅₀ (μΜ)
Nona-D-Arginine	NON – COVALENT	1422.73	87%	20.70 ± 3.60
PhAc-Lys-Lys-Arg-NH ₂		547.71	97%	130.4 ± 8.3
Aun-Lys-Lys-Arg-NH ₂		612.86	96%	34.43 ± 3.65
Palm-Lys-Lys-Arg-NH ₂		667.99	95%	29.43 ± 3.81
PhAc-Lys-Lys-Arg-(cyclic-dehydro)		514.67	96%	8.33 ± 0.33
Aun-Lys-Lys-Arg-(cyclic-dehydro)		579.83	98%	8.34 ± 0.78
Palm-Lys-Lys-Arg-(cyclic-dehydro)		634.95	97%	10.34 ± 1.71
PhAc-Lys-Lys-Arg-H	COVALENT	532.69	95%	3.14 ± 0.19
Aun-Lys-Lys-Arg-H		597.85	97%	7.05 ± 0.97

NS2B-NS3 ACTIVE SITE INHIBITORS


Tri and tetra-peptide inhibitors

Several peptides and peptidomimetics were synthesized as possible NS2B-NS3 inhibitors of WNV, tested and their IC_{50} value was evaluated.

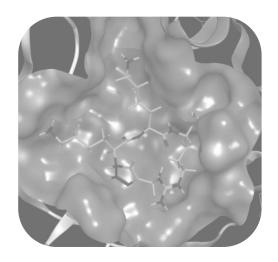
Peptide name	Interaction	MW (g/mol)	Purity	IC ₅₀ (μΜ)
Nona-D-Arginine	NON – COVALENT	1422.73	87%	20.70 ± 3.60
PhAc-Lys-Lys-Arg-NH ₂		547.71	97%	130.4 ± 8.3
Aun-Lys-Lys-Arg-NH ₂		612.86	96%	34.43 ± 3.65
Palm-Lys-Lys-Arg-NH ₂		667.99	95%	29.43 ± 3.81
PhAc-Lys-Lys-Arg-(cyclic-dehydro)		514.67	96%	8.33 ± 0.33
Aun-Lys-Lys-Arg-(cyclic-dehydro)		579.83	98%	8.34 ± 0.78
Palm-Lys-Lys-Arg-(cyclic-dehydro)		634.95	97%	10.34 ± 1.71
PhAc-Lys-Lys-Arg-H	COVALENT	532.69	95%	3.14 ± 0.19
Aun-Lys-Lys-Arg-H		597.85	97%	7.05 ± 0.97

Cyclic peptide inhibitor

Cyclization of the tripeptides to increase the inhibitory efficacy and to disfavor their degradation.

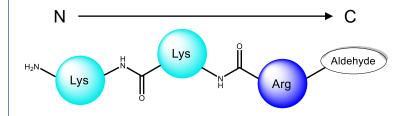
Superimposition of cyclic tripeptide on the active site pocket of NS2B-NS3 protease of WNV.

NS2B-NS3 ACTIVE SITE INHIBITORS

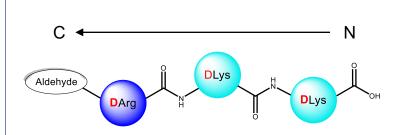

Tri and tetra-peptide inhibitors

Several peptides and peptidomimetics were synthesized as possible NS2B-NS3 inhibitors of WNV, tested and their IC_{50} value was evaluated.

Peptide name	Interaction	MW (g/mol)	Purity	IC ₅₀ (μΜ)
Nona-D-Arginine	NON – COVALENT	1422.73	87%	20.70 ± 3.60
PhAc-Lys-Lys-Arg-NH ₂		547.71	97%	130.4 ± 8.3
Aun-Lys-Lys-Arg-NH ₂		612.86	96%	34.43 ± 3.65
Palm-Lys-Lys-Arg-NH ₂		667.99	95%	29.43 ± 3.81
PhAc-Lys-Lys-Arg-(cyclic-dehydro)		514.67	96%	8.33 ± 0.33
Aun-Lys-Lys-Arg-(cyclic-dehydro)		579.83	98%	8.34 ± 0.78
Palm-Lys-Lys-Arg-(cyclic-dehydro)		634.95	97%	10.34 ± 1.71
PhAc-Lys-Lys-Arg-H	COVALENT	532.69	95%	3.14 ± 0.19
Aun-Lys-Lys-Arg-H		597.85	97%	7.05 ± 0.97


Cyclic peptide inhibitor

Cyclization of the tripeptide to increase the inhibitory efficacy and to disfavor its degradation.

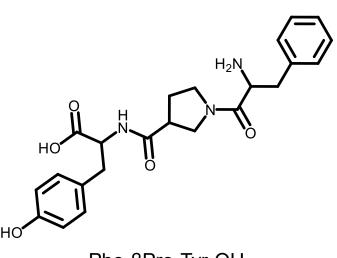


Retro-inverse peptide inhibitors

To increase the inhibitory efficacy and to disfavor its degradation.

Reference peptide

Retro-inverso peptide



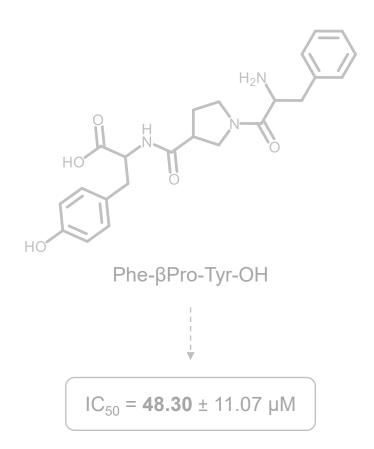
NS2B-NS3 ALLOSTERIC SITE INHIBITORS

We designed **different tripeptides** that mimic the structure of an already known reversible allosteric inhibitor (SID:852843) of the formation of the functional conformation of the NS3 protease of WNV and we studied these **possible allosteric inhibitors by docking**.

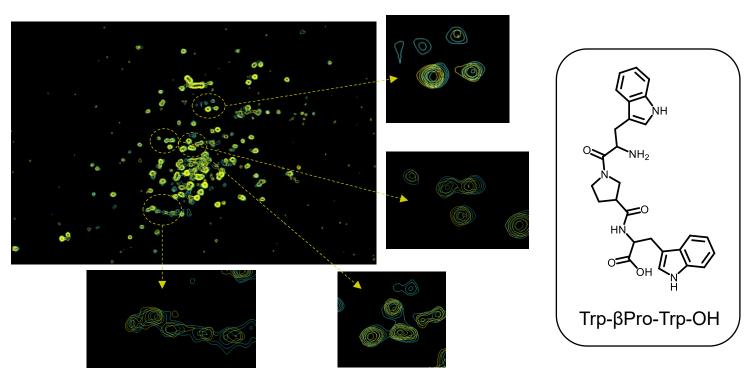
Active tripeptide allosteric inhibitor

Phe-βPro-Tyr-OH

$$IC_{50}$$
 = **48.30** ± 11.07 µM



NS2B-NS3 ALLOSTERIC SITE INHIBITORS


We designed **different tripeptides** that mimic the structure of an already known reversible allosteric inhibitor (SID:852843) of the formation of the functional conformation of the NS3 protease of WNV and we studied these **possible allosteric inhibitors by docking**.

Active tripeptide allosteric inhibitor

Protein-peptides interactions by NMR studies

2D NMR BEST-TROSY spectrum of the Trp-βPro-Trp peptide, which interacts with the NS2B-NS3 protease, as evidenced by Chemical Shift Perturbations.

AKNOWLEDGMENTS

Prof. **Cristina Peggion**: supervisor

University of Padova - Department of Pharmaceutical and Pharmacological Sciences

Dr. Riccardo Rigo: co-supervisor

Prof. Mattia Sturlese

Caterina Zulian Thomas Stella

University of Padova - Department of Pharmaceutical and Pharmacological Sciences

Prof. Arianna Loregian Prof. Beatrice Mercorelli

University of Cagliari - Department of life and environmental sciences

Prof. Angela Corona Prof. Enzo Tramontano

INF-ACT

